FREE SHIPPING ON ORDERS OVER $100

Research Categories
Research Categories

Cognition

ALL ARTICLES AND PRODUCT INFORMATION PROVIDED ON THIS WEBSITE ARE FOR INFORMATIONAL AND EDUCATIONAL PURPOSES ONLY. The products offered on this website are furnished for in-vitro studies only. In-vitro studies (Latin: in glass) are performed outside of the body. These products are not medicines or drugs and have not been approved by the FDA to prevent, treat or cure any medical condition, ailment or disease. Bodily introduction of any kind into humans or animals is strictly forbidden by law.

Peptide Research for Neurocognitive Improvement.

Cognition is a complex system encompassing processes such as episodic memory, working memory, executive function/inhibition, spatial learning, language/vocabulary comprehension, processing speed, and language/reading decoding. Changes in synaptic plasticity, the ability of the brain to change and adapt to new information, can be short lived from milliseconds to years. Short lived forms include facilitation, augmentation, and potentiation which enhances neurotransmitter release.

These dynamic changes represent the molecular basis for learning and memory. This synaptic plasticity can be influenced by several factors e.g., aging, diseases (obesity, diabetes, hypertension, dyslipidemia), toxins (smoking and alcohol), and exercise. Aging has been estimated to trigger performance decline with an incidence of mild cognitive impairment of 21.5–71.3 per 1000 person-years). Cortical thickness and subcortical volume are shrinking 0.5–1% annually as a morphological sign of cognitive decline with plaques and axonal degeneration. Dementia is diagnosed when the acquired cognitive impairment has become severe enough to compromise social and/or occupational functioning with increasing prevalence.

Worldwide, around 50 million people have dementia and, with one new case every three seconds, the number of people with dementia is set to triple by 2050. Thus, there is a huge need for new research in order to combat the above-mentioned metrics. The peptides below have undergone extensive research to help aid in the improvement for our neurocognitive system.

Selank

Both Selank and Semax are melanocortin’s and have pleiotropic effects involved in brain health and function. Selank by itself has traditionally been prescribed for anxiety and depression. Selank has pronounced anxiolytic activity and acts as a stable neuropsychotropic, antidepressant, and anti-stress medication.

Semax

Semax is used as a therapeutic with pathologies related to brain circulation dysfunction. As a combination, Selank/Semax has applications in improving learning processes, exploratory behavior, regeneration and development, nociceptive and in amatory processes, accelerate nerve regeneration and improve neuromuscular performance and overall neural health.

The Research Effects of TB-500 on Tissue Growth and Brain Injury

TB-500 is also known as thymosin beta 4 (TB4). Thymosin Beta 4 has been found, in animal models, to play a central role in controlling the structure of cells. By improving cell structure, TB-500 is thought to aid in wound healing, improve cell responses to stress, and even help cells to live longer. Scientific animal research studies have shown that TB-500’s role in regulating cell structure may eventually make it a leading therapeutic in wound healing, blood vessel repair, and even ocular (eye) repair.

Research has shown that when it comes to brain health, there are few drugs, supplements, or diets that make much difference. Unfortunately, the brain has remained a mystery to medical science and thus efforts to determine how to keep the brain healthy have been hindered. Science can tell us only that regular exercise and a relatively meat-free diet are associated with long-term brain health. There may, however, be some new evidence regarding thymosin beta 4 (also known as TB-4, or TB-500) and its impact on neural health.

Thymosin Beta 4

TB-500 (TB-4) is a naturally occurring peptide that is known to produce a vast array of healing and regenerative effects. It appears to promote everything from bone remodeling and growth after fracture to healing of heart muscle after a myocardial infarction (heart attack). Recent research in rats now suggests that TB-500 (TB-4) may improve neurological outcomes after stroke or brain damage.

Welcome back!

or
Menu
Explore

Search Peptides

Welcome back!

or
0