Tesamorelin and Sermorelin are both synthetic growth hormone-releasing hormone (GHRH) analogues. Sermorelin is often used as a treatment for growth hormone deficiency in both children and adults. Sermorelin works by mimicking the action of the natural hormone, growth hormone-releasing hormone (GHRH), to increase the production of growth hormone in the body. This can have various benefits, including promoting growth in children, increasing muscle mass, reducing body fat, improving sleep, and enhancing overall well-being. Sermorelin is typically administered to individuals with growth hormone deficiencies or certain medical conditions.
Tesamorelin is used primarily to treat excess abdominal fat accumulation in people living with HIV/AIDS who have developed lipodystrophy. Lipodystrophy is a condition characterized by abnormal fat distribution in the body. Tesamorelin works by stimulating the pituitary gland to release growth hormone, which can help reduce visceral fat (fat stored in the abdominal area) in these individuals. It is administered through daily injections.
Both peptides are known for their ability to bring about changes in body composition, and both have been linked to improvements in heart health and cognitive function in mouse models. Despite their similarities, however, there are unique differences between these peptides. Understanding the subtleties that arise between these two very similar peptides is helping researchers to better understand physiologic pathways and develop better, more advanced therapeutics.
Tesamorelin vs Sermorelin | A Note on Growth Hormone
Researchers have shown interest in growth hormone (GH) therapy as an alternative approach to address body composition independently of the androgen-dependent gonadal axis. Studies have demonstrated that GH therapy can yield positive effects, including increased lean body mass, reduced adiposity, and improved serum lipid profiles. Despite these promising results, the use of GH therapy remains a subject of controversy and is subject to strict regulation. Potential side effects include joint stiffness, radiculopathy, edema, and a theoretically suggested but unproven increased risk of malignancy. The issue with direct GH supplementation is that it can easily lead to overdose. The body lacks a direct feedback mechanism for regulating GH levels and instead regulates the entire GH axis at the levels of synthesis and secretion. Given the benefits of GH, researchers began seeking alternative ways to stimulate GH release to avoid the potential problems associated with direct GH supplementation.
The result of these efforts was the development of a new class of peptides referred to as growth hormone secretagogues. Growth hormone secretagogue therapy has emerged as a promising substitute for GH therapy. These compounds exhibit numerous favorable effects similar to GH therapy but without the associated adverse side effects or regulatory issues. Growth hormone secretagogues stimulate the body’s own release of GH. This stimulation occurs either through direct mimicry of growth hormone release hormone (GHRH) or interactions with ghrelin/growth hormone secretagogue receptors (GHS-R), distinct from the conventional hypothalamic-pituitary-somatotropic axis. This article focuses on the growth hormone-releasing hormone (GHRH) analogues Tesamorelin and Sermorelin.
Research indicates that GHS treatment can elevate serum GH and IGF-1 levels to levels comparable to those achieved with recombinant GH therapy, resulting in similar reductions in fat and increases in lean muscle mass. Remarkably, specific GHS can uniquely induce the natural pulsatile secretion of GH observed in vivo. This stands in contrast to exogenous GH therapy, which often leads to sustained supraphysiological levels of GH in the bloodstream[1]. As a result, the administration of GHS has the potential to offer many of the same advantages traditionally associated with GH therapy while carrying substantially lower risks.
